2-CPU平均负载


2 | 到底应该怎么理解“平均负载”?

每次发现系统变慢时,通常做的第一件事,就是执行top或者uptime命令,来了解系统的负载情况。比如像下面这样,我在命令行里输入了uptime命令,系统也随即给出了结果。

$ uptime
02:34:03 up 2 days, 20:14,  1 user,  load average: 0.63, 0.83, 0.85
02:34:03              //当前时间
up 2 days, 20:14      //系统运行时间
1 user                //正在登录用户数

最后三个数字,依次则是过去1分钟、5分钟、15分钟的平均负载(Load Average)。

平均负载

简单来说,平均负载是指单位时间内,系统处于 可运行状态不可中断状态 的平均进程数,也就是 平均活跃进程数,它和CPU使用率并没有直接关系。

所谓可运行状态的进程,是指正在使用CPU或者正在等待CPU的进程,也就是我们常用ps命令看到的,处于R状态(Running 或 Runnable)的进程。

不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的I/O响应,也就是我们在ps命令中看到的D状态(Uninterruptible Sleep,也称为Disk Sleep)的进程。

比如,当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。如果此时的进程被打断了,就容易出现磁盘数据与进程数据不一致的问题。

所以,不可中断状态实际上是系统对进程和硬件设备的一种保护机制。

因此,可以简单理解为,平均负载其实就是平均活跃进程数。平均活跃进程数,直观上的理解就是单位时间内的活跃进程数,但它实际上是活跃进程数的指数衰减平均值。这个“指数衰减平均”的详细含义你不用计较,这只是系统的一种更快速的计算方式,你把它直接当成活跃进程数的平均值也没问题。

既然平均的是活跃进程数,那么最理想的,就是每个CPU上都刚好运行着一个进程,这样每个CPU都得到了充分利用。比如当平均负载为2时,意味着什么呢?

  • 在只有2个CPU的系统上,意味着所有的CPU都刚好被完全占用。
  • 在4个CPU的系统上,意味着CPU有50%的空闲。
  • 而在只有1个CPU的系统中,则意味着有一半的进程竞争不到CPU。

平均负载为多少时合理

在 uptime 命令的结果里,那三个时间段的平均负载数,多大的时候能说明系统负载高?或是多小的时候就能说明系统负载很低呢?

平均负载最理想的情况是等于 CPU个数。所以在评判平均负载时, 首先你要知道系统有几个 CPU,这可以通过 top 命令或者从文件 /proc/cpuinfo 中读取,比如:

# 关于grep和wc的用法请查询它们的手册或者网络搜索
$ grep 'model name' /proc/cpuinfo | wc -l

有了CPU 个数,我们就可以判断出,当平均负载比 CPU 个数还大的时候,系统已经出现了过载。

  • 如果1分钟、5分钟、15分钟的三个值基本相同,或者相差不大,那就说明系统负载很平稳。

  • 但如果1分钟的值远小于15 分钟的值,就说明系统最近1分钟的负载在减少,而过去15分钟内却有很大的负载。

  • 反过来,如果1分钟的值远大于 15 分钟的值,就说明最近1分钟的负载在增加,这种增加有可能只是临时性的,也有可能还会持续增加下去,所以就需要持续观察。一旦1分钟的平均负载接近或超过了CPU的个数,就意味着系统正在发生过载的问题,这时就得分析调查是哪里导致的问题,并要想办法优化了。

假设我们在一个单 CPU 系统上看到平均负载为 1.73,0.60,7.98,那么说明在过去 1 分钟内,系统有 73% 的超载,而在 15 分钟内,有 698% 的超载,从整体趋势来看,系统的负载在降低。

那么,在实际生产环境中,平均负载多高时,需要我们重点关注?

当平均负载高于 CPU 数量70%的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。

但70%这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。

平均负载与CPU使用率

现实中,经常容易把平均负载和 CPU 使用率混淆,如何区分?有个疑惑,既然平均负载代表的是活跃进程数,那平均负载高了,不就意味着 CPU 使用率高吗?

平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了 正在使用 CPU 的进程,还包括 等待 CPU等待 I/O 的进程。

而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:

  • CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;

  • I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;

  • 大量等待 CPU 的进程调度也会导致平均负载升高,此时的CPU使用率也会比较高。

平均负载案例分析

用 iostat、mpstat、pidstat 等工具,找出平均负载升高的根源。

准备

基于 Ubuntu 18.04,当然,同样适用于其他 Linux 系统。

  • 机器配置:2 CPU,8GB 内存。

  • 预先安装 stress 和 sysstat 包,如 apt install stress sysstat。

什么是 stress 和 sysstat?

stress 是一个 Linux 系统压力测试工具,用作异常进程模拟平均负载升高的场景。

而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。会用到这个包的两个命令 mpstat 和 pidstat。

  • mpstat 是一个常用的多核 CPU 性能分析工具,用来实时查看每个 CPU 的性能指标,以及所有CPU的平均指标。

  • pidstat 是一个常用的进程性能分析工具,用来实时查看进程的 CPU、内存、I/O 以及上下文切换等性能指标。

此外,每个场景都需要开三个终端,登录到同一台 Linux 机器中。

另外要注意,下面的所有命令,都是默认以 root 用户运行。所以,如果你是用普通用户登陆的系统,一定要先运行 sudo su root 命令切换到 root 用户。

如果上面的要求都已经完成了,用 uptime 命令,看一下测试前的平均负载情况:

$ uptime
...,  load average: 0.11, 0.15, 0.09

场景一:CPU 密集型进程

首先,在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:

$ stress --cpu 1 --timeout 600

接着,在第二个终端运行uptime查看平均负载的变化情况:

# -d 参数表示高亮显示变化的区域
$ watch -d uptime
...,  load average: 1.00, 0.75, 0.39

最后,在第三个终端运行mpstat查看 CPU 使用率的变化情况:

# -P ALL 表示监控所有CPU,后面数字5表示间隔5秒后输出一组数据
$ mpstat -P ALL 5
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:30:06     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:30:11     all   50.05    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00   49.95
13:30:11       0    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00  100.00
13:30:11       1  100.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00

从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高正是由于 CPU 使用率为 100% 。

那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?可以使用 pidstat 来查询:

# 间隔5秒后输出一组数据
$ pidstat -u 5 1
13:37:07      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:37:12        0      2962  100.00    0.00    0.00    0.00  100.00     1  stress

从这里可以明显看到,stress进程的CPU使用率为100%。

场景二:I/O 密集型进程

首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync:

$ stress -i 1 --timeout 600

还是在第二个终端运行uptime查看平均负载的变化情况:

$ watch -d uptime
...,  load average: 1.06, 0.58, 0.37

然后,第三个终端运行mpstat查看 CPU 使用率的变化情况:

# 显示所有CPU的指标,并在间隔5秒输出一组数据
$ mpstat -P ALL 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:41:28     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:41:33     all    0.21    0.00   12.07   32.67    0.00    0.21    0.00    0.00    0.00   54.84
13:41:33       0    0.43    0.00   23.87   67.53    0.00    0.43    0.00    0.00    0.00    7.74
13:41:33       1    0.00    0.00    0.81    0.20    0.00    0.00    0.00    0.00    0.00   98.99

从这里可以看到,1 分钟的平均负载会慢慢增加到 1.06,其中一个 CPU 的系统CPU使用率升高到了 23.87,而 iowait 高达 67.53%。这说明,平均负载的升高是由于 iowait 的升高。

那么到底是哪个进程,导致 iowait 这么高呢?还是用 pidstat 来查询:

# 间隔5秒后输出一组数据,-u表示CPU指标
$ pidstat -u 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:42:08      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:42:13        0       104    0.00    3.39    0.00    0.00    3.39     1  kworker/1:1H
13:42:13        0       109    0.00    0.40    0.00    0.00    0.40     0  kworker/0:1H
13:42:13        0      2997    2.00   35.53    0.00    3.99   37.52     1  stress
13:42:13        0      3057    0.00    0.40    0.00    0.00    0.40     0  pidstat

可以发现,还是 stress 进程导致的。

场景三:大量进程的场景

当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。

比如,还是使用 stress,但这次模拟的是 8 个进程:

$ stress -c 8 --timeout 600

由于系统只有 2 个CPU,明显比 8 个进程要少得多,因而,系统的 CPU 处于严重过载状态,平均负载高达7.97:

$ uptime
...,  load average: 7.97, 5.93, 3.02

接着再运行pidstat来看一下进程的情况:

# 间隔5秒后输出一组数据
$ pidstat -u 5 1
14:23:25      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
14:23:30        0      3190   25.00    0.00    0.00   74.80   25.00     0  stress
14:23:30        0      3191   25.00    0.00    0.00   75.20   25.00     0  stress
14:23:30        0      3192   25.00    0.00    0.00   74.80   25.00     1  stress
14:23:30        0      3193   25.00    0.00    0.00   75.00   25.00     1  stress
14:23:30        0      3194   24.80    0.00    0.00   74.60   24.80     0  stress
14:23:30        0      3195   24.80    0.00    0.00   75.00   24.80     0  stress
14:23:30        0      3196   24.80    0.00    0.00   74.60   24.80     1  stress
14:23:30        0      3197   24.80    0.00    0.00   74.80   24.80     1  stress
14:23:30        0      3200    0.00    0.20    0.00    0.20    0.20     0  pidstat

可以看出,8 个进程在争抢 2 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。

小结

总结平均负载的理解。

平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:

  • 平均负载高有可能是 CPU 密集型进程导致的;

  • 平均负载高并不一定代表 CPU 使用率高,还有可能是 I/O 更繁忙了;

  • 当发现负载高的时候,你可以使用 mpstat、pidstat 等工具,辅助分析负载的来源。

思考

聊聊你所理解的平均负载,当你发现平均负载升高后,又是怎么分析排查的呢?

平均负载(Average Load)在Linux系统中,指的是单位时间内系统的CPU核心需要处理的任务队列的平均数目。具体来说,它反映了系统整体的工作压力,主要包括正在运行的进程(包括正在运行和等待CPU时间片的进程)、不可中断睡眠状态的进程(如IO阻塞进程)以及处于任务队列中等待调度的进程。

在Linux系统中,可以通过uptimetop命令查看系统的平均负载,一般会显示过去1分钟、5分钟和15分钟的平均负载值。

当发现平均负载升高后,可以按照以下步骤进行分析排查:

  1. 查看CPU使用率:使用top命令查看整体CPU使用率,特别是用户态CPU(us)、系统态CPU(sy)和空闲CPU(id)的比例。如果CPU使用率接近100%,说明CPU资源紧张;若idle较低,可能是CPU密集型任务导致的高负载。
  2. 检查进程状态:通过topps命令找出占用CPU资源最多的进程,并分析其业务逻辑是否存在异常或是否有优化空间。
  3. 检查IO压力:如果CPU使用率不高,但平均负载仍然较高,可能是由于大量进程在等待IO操作。可以使用iostat命令查看磁盘I/O状况,或者通过vmstat查看系统块设备的活动情况。
  4. 检查内存使用情况:过高内存使用率可能导致频繁的页面交换(Swap),进而加重CPU负担。使用freetop查看内存使用情况,包括物理内存和Swap空间。
  5. 网络因素:如果是网络服务相关的问题,高并发请求也可能导致负载升高,此时需要查看网络流量、TCP连接数等指标。
  6. 系统日志分析:检查系统日志(如/var/log/messages或journalctl)以及应用程序日志,查看是否有错误提示或异常警告。
  7. 监控系统资源:长期观察系统的各项资源使用情况,包括但不限于CPU、内存、磁盘I/O、网络I/O等,有助于定位问题所在。

通过以上步骤,通常可以定位到引起平均负载升高的主要原因,然后针对性地采取优化措施,如优化程序性能、调整系统配置、增加硬件资源等。


文章作者: Merlin
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Merlin !
  目录